반응형


참조    : http://ssambback.tistory.com/entry/Unix-or-Linux-%EB%B3%84-%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%A8-%EC%97%90%EB%9F%AC%EB%93%A4


프로그램 에러 시그널들 (SIGFPE, SIGILL, SIGSEGV, SIGBUS, SIGABRT) - 매우 중요 ★★★★★

다음의 시그널들은 심각한 프로그램의 에러가 운영체제나 컴퓨터 자체에 의해 검출되었을 때 발생 된다. 
일반적으로, 이들 시그널 모두는 당신의 프로그램이 심각하게 깨져있고, 에러가 포함된 그 실행을 계속할 아무런 방법이 없음을 지적한다.


어 떤 프로그램들은 프로그램의 에러 시그널로 인해서 종료되기전에 그들을 깨끗하게 처리한다. 예를 들어, 터미널 입력의 반향을 끈(tnun off) 프로그램들은 다시 반향을 켤 목적으로 프로그램 에러 시그널들을 처리할 것이다. 핸들러는 시그널을 위한 디폴트 동작을 정하고 그 동작을 함으로써 끝날 것이다. 만일 프로그램이 시그널 핸들러를 가지지 않았다면, 프로그램은 그 시그널로 인해서 종료될 것이다.

SIGFPE 시그널은 심각한 산술적 에러를 보고한다. 그 이름이 "floating-point exception"에서 유래된것이라 할지라도, 이 시그널은 실제로는 모든 산술적 에러들에 작용한다. 만일 어떤 프로그램이 어떤 위치에 정수 데이터를 저장하고 그 데이터에 플로팅-포인트 명령을 사용한다면, 이것은 그 프로세서가 데이터를 플로팅-포인트 수로써 인식할 수 없기 때문에 종종 "유용하지 않은 연산"의 원인이 된다.

SIGILL 시그널의 이름은 "비합법적인 명령(illegal instruction)"에서 유래되었다
그것은 쓸모없거나 특권이 부여된 명령어를 실행하려 했다는 의미이다. 
오직 유용한 명령어만이 발생된 C 컴파일러에서, SIGILL은 전형적으로 실행 가능 파일이 훼손되었거나, 당신이 데이터를 실행하려 시도했다는 것을 지적한다. 

후자의 상황이 발생되는 일반적 상황으로는 함수를 위한 포인터가 있을 것이라고 예상된 곳에서 유용하지 않은 오브젝트를 파싱하거나, 자동 배열의 끝을 넘어서 기록을 하고( 또는 자동 변수를 위한 포인터와 유사한 문제들) 스택 프레임의 반환 어드레스 처럼 스택에서 
다른 데이터의 훼손과 같은 문제들이 있다.

SIGSEGV 시그널은 할당된 메모리의 범위를 벗어나는곳에서 읽거나, 쓰기를 시도할 때 발생 된다. 
(실제로, 그 시그널들은 프로그램이 충분한 영역을 할당받지 못할 때 시스템 메모리 보호 메커니즘에 의해서 발생한다.) 

그 이름은 "segmentation violation"의 약자이다. 
SIGSEGV 상황이 발생되는 가장 일반적인 방법은 비참조 되는 널( defeferencing a null) 이나 초기화되지 않은 포인터에 의한 것이다. 

널 포인터는 주소 0으로 참조되고, 대부분의 운영체제는 이 주소가 정확하게 유용하지 않음을 확실히 
하기 때문에 
비참조 널 포인터는 SIGSEGV가 발생될 것이다. 
(어떤 운영체제는 주소가 0인 메모리도 유용하고, 비참조 널 포인터는 그들 시스템상에서는 시그널을 발생하지 않는다.) 
비초기화된 포인터에서는, 유용하지 않거나, 유용하더라도 임의의 주소들을 갖게된다. 
SIGSEGV 상황이 얻어지는 다른 일반적 방법은 배열에 포인터를 사용했을 때 그 배열의 끝을 체크하기를 실패했을 때이다. 

SIGBUS 시그널은 유용하지 않은 포인터가 비참조되었을 때 발생 된다. 
SIGSEGV 처럼, 이 시그널은 초기화되지 않은 포인터를 비참조 한 것의 결과이다. 
두 시그널의 차이점은 SIGSEGV는 유용한 메모리에서 유용하지못한 억세스를 지적하고, 
SIGBUS는 유용하지못한 주소를 억세스 하는 것을 지적한다. 
특별하게, SIGBUS 시그널은 4개로 나누어지지 않은 주소에 4-단어 정수로 참조하는것처럼, 
부적당한 포인터가 비참조 됨으로써 발생한다. 
(각종 시스템은 주소 정렬은 위한 자신만의 필요조건을 갖는다.) 이 시그널의 이름은 "bus error"의 약자이다.

SIGABRT 시그널은 프로그램 그 자체와 abort가 호출되었음을 보고함으로써 발생되는 에러를 지적한다.

2. 종료 시그널 (SIGHUP, SIGINT, SIGQUIT, SIGTERM, SIGKILL) - 중요 ★★★★

이들 시그널들은 이런 저런 방법으로 프로세스를 종료함을 알리기위해 사용된다. 
그들은 완전히 다른 목적을 위해 사용되기 때문에 다른 이름을 가졌고, 프로그램은 그들은 다르게 취급하기를 원할 것이다.
이들 시그널들은 처리하기 위한 이유는 보통 당신의 프로그램이 실제로 종료되기전에 적당하게 처리할 수 있도록 하기 위한 것이다. 
예를 들어, 당신은 상황정보를 저장하고, 임시 파일들을 지우고, 이전의 터미널 모드를 반환하기를 원할수도 있다. 
그와 같이 핸들러(handler)는 발생된 시그널을 위한 디폴트 동작을 지정하고 그리고 그 시그널을 다시 발생시킴으로써 종료할 것이다. 
이것은 만일 프로그램이 핸들러를 가지지 않았더라도, 그 시그널로 인해서 프로그램이 종료될 것이다.

SIGHUP ("hang-up") 시그널은 사용자 터미널의 단절을 보고하기 위해 사용되어지는데, 
아마도 네트웍이나 전화선 연결이 끊어졌기 때문이다. 

SIGINT("program interrupt") 시그널은 사용자가 INTR 문자를 (보통 C-c)을 입력했을 때 보내어진다. 

SIGQUIT 시 그널은 다른 키_QUIT 문자, 보통 C-\_에 의해서 제어된다는 것을 제외하고는 SIGINT와 유사하고, 그 프로세스가 종료 될 때 프로그램 에러 시그널처럼 코어 파일을 작성한다. 당신은 사용자에 의해 "검출된" 프로그램 에러 상황으로 이들을 생각할 수 있다. 

SIGTERM 시그널은 프로그램을 종료하는데 사용하는 포괄적인 시그널이다. SIGKILL과 달리, 이 신호는 블록되어진고, 처리되어지고 무시되어질 수 있다.

SIGKILL 시그널은 즉각적인 프로그램 종료를 일으키기 위해서 사용되어진다. 이 시그널은 처리되거나, 무시되거나 할 수 없고, 그 결과는 항상 치명적이 된다. 이 시그널은 블록하는것도 불가능하다. 

3. 알람 시그널 (SIGALRM, SIGVTALRM, SIGPROF) - 알아도 그만.. 몰라도 그만..  ^^;;

그들 시그널은 타이머의 경과를 지적하는데 사용되어진다. 
그들 시그널을 위한 디폴트 동작은 프로그램을 종료를 일으키는 것이다. 
이 디폴트 동작은 거의 유용하지 않다. 
그 들 시그널을 사용하는 대부분의 방법은 어느 경우에 맞는 핸들러 함수들을 요구하는 것이다.

SIGALRM 시그널은 전형적으로 실제또는 클럭 시간을 계산한 타이머의 경과를 지적한다. 
예를 들어 alarm 함수에의해 사용되어진다. 

SIGVTALRM 시그널은 전형적으로 현재 프로세스에 의해 사용된 CPU시간을 계산하는 타이머의 경과를 지적한다. 
그 이름은 "virtual time alarm"의 약자이다.

SIGPROF 시그널은 현재의 프로세스에 의해 사용된 CPU 시간과, 
프로세스를 대신하여 시스템에의해 사용된 CPU시간의 둘을 계산한 타이머의 경과를 지적하는데 사용된다. 
타이머가 자원의 프로파일링을 위한 도구로써 사용되어지므로, 시그널의 이름이 SIGPROF이다.

4. 비동기 입/출력 시그널 (SIGIO, SIGURG)

이 절에 설명된 시그널들은 비동기 입/출력 도구들과 함께 사용되어진다. 
당신은 어떤 특정한 파일 기술자가 그들 시그널을 발생시키도록 하기 위해서 fcntl을 호출함으로써 명백한 동작을 취하도록 해야한다.

SIGIO 시그널은 파일기술자가 입력 또는 출력을 수행할 준비가 되어있을 때 보내어진다. 
대부분의 운영체제에서, 터미널과 소켓만이 SIGIO를 발생시킬 수 있다. 
보통의 파일들을 포함한 다른 종류들은 당신이 그들에게 요청했을지라도 SIGIO신호를 발생시키지 않는다.

SIGURG 시그널은 소켓에 도착한 데이터가 "긴급"하거나 범위를 벗어 났을 때 보내어진다.

5. 작업 제어 시그널 (SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) - 중요 ★★★★

이들 시그널은 작업 제어를 지원하기 위해서 사용되어진다. 
만일 당신의 시스템이 작업 제어를 지원하지 않는다면 시그널들은 발생되어지거나, 처리될 수는 없지만 매크로들은 정의되어있다. 
당신이 실제로 작업이 어떻게 제어되는지를 이해할 수 없다면 그들 시그널을 그대로 방치할 것이다.

SIGCHLD 시그널은 자식 프로세스들중의 하나라도 종료되거나 멈출 때마다 부모 프로세스에게 보내어진다. 
이 시그널을 위한 디폴트 동작은 그것을 무시하는 것이다. 

당신은 프로세스가 계속되도록 하기 위해서 SIGCONT 신호를 보낼 것이다.
SIGCONT 시그널을 위한 디폴트 동작은 만일 그 프로세스가 멈추었다면 그 프로세스를 계속하도록 만드는 것이고 
그렇지 않다면 그것을 무시하는 것이다. 
대부분의 프로그램에서는 SIGCONT를 처리할 아무런 이유가 없다. 
그들은 전에 멈추었었음을 인식함이 없이 계속 실행되고 있다고 가정한다. 

SIGSTOP 시그널은 프로세스를 멈춘다. 그것은 처리되거나, 무시되거나 블록될 수 없다.

SIGTSTP 시그널은 상호 작용하는 멈춤 신호이다. SIGSTOP와는 달리 이 신호는 처리되거나 무시되어질 수 있다. 
당신의 프로그램에서 프로세스가 멈추었을 때 파일이나 시스템 테이블을 안전한 상황으로 만들어놓을 특별한 필요가 있다면 
이 신호를 처리할 수 있다.

한 프로세스가 배경 작업으로써 실행되고 있는 동안 사용자의 터미널로부터 읽을 수 없다. 
배경 작업에 속한 어느 프로세스가 터미널로부터 읽으려 시도할 때, 그 작업에 속한 모든 프로세스는 SIGTTIN 신호를 받는다. 
이 시그널을 위한 디폴트 동작은 그 프로세스를 멈추는 것이다. 

SIGTTOU 시그널은 배경 작업에 속한 프로세스가 터미널에 출력하려 시도하거나 그 터미널 모드를 설정하려 시도할 때 발생 된다. 
다시 말하면 디폴트 동작은 그 프로세스를 멈추는 것이다. 
프로세스가 멈추어있을 동안, SIGKILL 시그널과 SIGCONT시그널을 제외하고는 어느 다른 시그널들은 배달되어질 수 없다.

SIGKILL 시그널은 항상 프로세스의 종료를 유발하고 블록되거나 무시될 수 없다. 
당신이 SIGCONT 시그널을 무시하거나 블록할 수 있지만, 그것은 만일 그 프로세스가 멈추어져있다면 프로세스가 계속되도록 한다. 
프로세스에게 보낸 SIGCONT 시그널은 아직 미해결인채로 남아있는 멈춤 시그널을 프로세스가 버리도록 한다. 
이와 비슷하게, 어떤 프로세스에서 아직 미해결인채로 남아있는 SIGCONT 시그널은 멈춤 시그널이 도착했을 때 버려진다. 
고아가 되어버린 프로세스 그룹에 있는 한 프로세스에게 SIGTSTP, SIGTTIN, 또는 SIGTTOU 시그널을 보내면 그것은 처리되지도 않고, 
그 프로세스는 멈추어 지지도 않는다. 
그것을 계속할 아무런 방법이 없는 부당하게 되어버린 프로세스를 멈추게 하라. 
운영체제에 의존하지 말고당신이 무언가를 사용해서 멈추게 하라. 어떤 시스템은 아무런 일도 하지 않을 것이다. 
다른 시스템들은 대신에 SIGKILL 또는 SIGHUP와 같은 시그널들을 배달할 것이다. 

6. 잡다한 시그널 (SIGUSR1 ~ SIGUSR22)

그들 시그널은 다양한 다른 상활들을 보고하기 위해서 사용되어진다. 이들의 디폴트 동작은 프로세스가 종료되도록 하는 것이다.

SIGPIPE 시그널은 읽는 프로세스가 없는 상황에서의 PIPE에 대한 쓰기시 발생한다.

SIGUSR1 과 SIGUSR22 시그널들은 당신이 원하는 어떤 방법을 사용하지 못하도록 한다. 그들은 프로세스간 통신을 위해서 유용하다. 

그들 시그널을 보통 심각하기 때문에 당신은 그 시그널을 받은 프로그램에서 그들은 위한 시그널 처리를 해야할 것이다.



출처: http://ssambback.tistory.com/entry/Unix-or-Linux-별-프로그램-에러들 [Rehoboth.. 이곳에서 부터]

반응형
반응형


출처 : http://sthyun.tistory.com/entry/EWOULDBLOCKEAGAIN

---------------------------------------------------------------------------------


넌블럭킹 소켓

socket() 으로 생성되는 소켓은 기본값으로 Blocking 소켓이다. 하지만 이미 생성된 소켓을 fcntl() 함수를 사용하여 nonblocking socket으로 변경 가능하다.

※ Blocking Socket(B)/Nonblocking Socket(N)

(여기서 errno는 errno.h를 인클루드해야 이용할수 있다.)

- read

  • B : read 버퍼가 비어있을때 block
  • N : read 버퍼가 비어있을때 -1 return, errno==EWOULDBLOCK/EAGAIN

* Blocking socket의 경우에 read 버퍼에 존재하는 데이터의 크기가 read시 요청한 데이터의 크기보다 작은 경우라도 read 버퍼에 존재하는 데이터만큼 리턴되며 block 되지 않음.

- write

  • B : write 버퍼가 꽉 차있을때 block
  • N : write 버퍼가 꽉 차있을때 -1 return, errno==EWOULDBLOCK/EAGAIN

- accept

  • B : backlog( 현재의 connection 요청 큐 )가 비어있을때 block
  • N : backlog( 현재의 connection 요청 큐 )가 비어있을때 -1 return, errno==EWOULDBLOCK/EAGAIN

- connect

  • B : connection이 완전히 이루어질때까지 block
  • N : connection이 완전히 이루어지 않더라도 곧바로 return. 나중에 getsockopt로 connection이 완전히 이루어졌는지 확인가능.

※ Nonblocking 소켓의 장점/단점

  • 장점 : 멀티스레드를 사용하지 않고도 다른 작업을 할 수 있다.
  • 단점 : 프로그램이 복잡해지며, CPU 사용량이 증가한다.
  • 멀티쓰레드 기반에서 nonblock socket 을 사용하면 cpu 사용량이 엄청나게 증가한다.
    이건 성능상의 차이는 확연한데 gprof 를 돌려도 안나온다. 멀티쓰레드 환경에서는 절대 사용하지말것.

※ Nonblocking 소켓으로 만드는 방법 : fcntl()함수를 이용한다.

int flag;

flag = fcntl( sock_fd, F_GETFL, 0 );

fcntl( sock_fd, F_SETFL, flag | O_NONBLOCK );

파일 입력과 출력
이 절은 파일 기술자상의 기본 입력과 출력 명령을 수행하기 위한 함수들을 설명하고 있다:

read, write, 그리고 lseek. 이들 함수들은 헤더파일 'unistd. h'에 선언되어 있다.

read함수는 기술자 filedes의 파일로부터 size 바이트를 읽고, 그 결과를 버퍼에 저장한다. (이것은 문자 스트링이 필요하지 않고 그곳에는 부가된 널 종료문자가 없다)


ssize_t read (int filedes, void *buffer, size_t size)


반환 값은 실제로 읽은 바이트의 수이다.

이것은 size보다 적을수도 있다


예를 들어, 만일 파일에 남겨진 바이트의 수가 적거나 즉시 유용한 바이트의 수가 적은 경우 등이 있다.

정확한 동작은 파일의 종류가 무엇인지에 따라 의존한다.

size 바이트보다 덜 읽는 것은 에러가 아님을 기억하라.

0의 값은 파일의 끝을 지적한다. ( 만일 size 인수의 값이 0인 경우를 제외하고. . ) 이것은 에러로 간주하지 않는다.


만일 당신이 파일의 끝인 상태에서 read를 호출하면, 그것은 0을 반환하는 것 외에 아무 일도 하지 않는다.

만일 read가 적어도 한 문자를 반환한다면, 당신이 파일의 끝에 도달했는지를 알 수 있는 아무런 방법이 없다.

그러나 만일 당신이 끝에 도달해 있었다면 다음 read의 호출은 0을 반환해서 파일의 끝임을 지적해줄 것이다.

에러가 발생한 경우에, read는 -1을 반환한다.


다음의 errno는 이 함수에서 정의된 에러의 상황이다.


EAGAIN 일반적으로, 즉시 유용한 입력이 없을 때, read는 입력을 기다린다.

그러나 만일 그 파일에서 O_NONBLOCK가 설정되면 read는 아무런 데이터도 기다리지 않고 즉시 반환하고, 이 에러를 보고한다.

호환성 노트 : BSD Unix의 대부분의 버전은 이것을 위한 다른 에러코드를 사용한다:

EWOULDBLOCK. GNU 라이브러리에서는, EWOULDBLOCK은 EAGAIN의 다른 이름이다. 그래서 당신이 어떤 이름을 사용해도 문제가 발생되지 않는다.


어떤 시스템들은, 특별한 문자 파일로부터 데이터의 큰 덩어리를 읽으려 할 때, 만일 커널(kernal)이 당신의 것을 담을 수 있는(to lock down the user's pages), 충분한 물리적 메모리를 얻을 수 없는 경우에 EAGAIN의 에러를 내고 실패했음을 지적한다.

디바이스가 사용자의 메모리 영역을 직접적으로 억세스 하는 것이 제한되어 있는 것은 그들은 커널내부의 분리된 버퍼를 사용하기 때문이다. 그것에 터미널들은 포함되지 않는다,


EBADF 

filedes 인수에 주어진 것이 유용한 파일 기술자가 아니다.


EINTR 

read가 입력을 기다리고 있는 동안 시그널에 의해 인터럽트 되어졌다.


EIO 

많은 디바이스들, 그리고 디스크 파일들을 위하여, 이 에러는 하드웨어 에러를 지적한다.

EIO는 또한 제어 중인 터미널로부터 배경 프로세스가 읽기를 시도하고, SIGTTIN의 신호가 아무런 동작도 하지 않고 보내짐에 의해 멈춘 프로세스의 일반적 동작에 대해 발생한다.


이것은 만약 신호가 블록되어지거나 무시되거나, 프로세스 그룹이 부모 프로세스를 잃어 버렸다면 발생되어질 것이다.


ssize_t write (int filedes, const void *buffer, size_t size)


write함수는 기술자 filedes 파일에 버퍼에 있는 size 바이트의 데이터를 쓰는 함수이다. 버퍼에 있는 데이터는 문자 스트링과 널 문자가 필요하지 않다. 반환 값은 실제로 쓰여진 바이트들의 개수이다.이것은 보통은 size와 같지만, 더 적을수도 있다 ( 예를 들어, 만일 물리적 매체가 채워져 있는 경우 ). 에러가 발생하면 write는 -1을 반환한다.


다음의 errno는 이 함수에서 정의한 에러상황이다.


EAGAIN 

일반적으로 write 명령하에서 블록 쓰기 동작은 완벽하다.

그러나 만일 그 파일에서 O_NONBLOCK 플래그가 설정되어 있다면, 그것은 어떤 데이터도 쓰지 않고 곧바로 반환하고, 에러를 발생한다.

그 상황에 대한 하나의 예는 프로세스가 출력하려는 블록을 STOP 문자를 받아들임으로 인해 출력이 일시 중단되고, 흐름제어를 지원하는 터미널 디바이스에 쓰기를 시도할 때 발생한다.


EWOULDBLOCK. 

GNU 라이브러리에서는, EWOULDBLOCK은 EAGAIN의 다른 이름이다.

그래서 당신이 어떤 이름을 사용해도 문제가 발생되지 않는다.

어떤 시스템들은, 특별한 문자 파일로부터 데이터의 큰 덩어리를 쓰려 할 때, 만일 커널(kernal)이 당신의 것을 담을 수 있는( to lock down the user's pages ), 충분한 물리적 메모리를 얻을 수 없는 경우에 EAGAIN의 에러를 내고 실패했음을 지적한다.

디바이스가 사용자의 메모리 영역을 직접적으로 억세스 하는 것이 제한되어 있는 것은 그들은 커널내부의 분리된 버퍼를 사용하기 때문이다. 그것에 터미널들은 포함되지 않는다,


EBADF 

filedes 인수는 유용한 파일 기술자가 아니다.


EFBIG 

파일의 크기가 그 실행에서 지원할 수 있는 것보다 크다.


EINTR 

write 오퍼레이션은 명령이 완전히 수행될 때까지 기다리는 동안 신호에 의해 인터럽트 되어졌다.


EIO 많은 디바이스들, 그리고 디스크 파일들을 위하여, 이 에러는 하드웨어 에러를 지적한다.

EIO는 또한 제어 중인 터미널로부터 배경 프로세스가 읽기를 시도하고, SIGTTIN의 신호가 아무런 동작도 하지 않고 보내짐에 의해 멈춘 프로세스의 일반적 동작에 대해 발생한다.

이것은 만약 신호가 블록되어지거나 무시되거나, 프로세스 그룹이 부모 프로세스를 잃어 버렸다면 발생되어질 것이다. ENOSPC 디바이스가 차 있다.


EPIPE

이 에러는 어느 프로세스에 의해서 읽기 위해 개방되지 않는 파이프나 FIFO에 쓰려 시도할 때 반환된다.

이것이 발생될 때, SIGPIPE 신호를 프로세스에 보낸다.


당신이 EINTR 실패를 방지하기 위해 조정하지 않았다면, 당신은 실패한 write의 호출에 대해서 errno를 체크해야할 것이다. 그리고 만일 errno가 EINTR 이라면, 그냥 간단하게 다시 호출해주면 된다.

이것을 하는 쉬운 방법으로 매크로 TEMP_FAILURE_RETRY 가 있다. 다음처럼:

nbytes = TEMP_FAILURE_RETRY (write (desc, buffer, ount));

write 함수는 fputc처럼 스트림에 쓰는 모든 함수들에 기본적으로 포함되어 있다. 

반응형

+ Recent posts